
Modification of the generalized quasi-likelihood model in the 
analysis of the Add Health study

Katherine E. Irimata1,*, Jeffrey R. Wilson2

1Division of Research and Methodology, National Center for Health Statistics, Centers for Disease 
Control and Prevention, Hyattsville, MD, USA

2Department of Economics, Arizona State University, Tempe, AZ, USA

Abstract

The relationship between the mean and variance is an implicit assumption of parametric modeling. 

While many distributions in the exponential family have a theoretical mean-variance relationship, 

it is often the case that the data under investigation are correlated, thus varying from the relation. 

We present a generalized method of moments estimation technique for modeling certain correlated 

data by adjusting the mean-variance relationship parameters based on a canonical 

parameterization. The proposed mean-variance form describes overdispersion using two 

parameters and implements an adjusted canonical parameter which makes this approach feasible 

for all distributions in the exponential family. Test statistics and confidence intervals are used to 

measure the deviations from the mean-variance relation parameters. We use the modified relation 

as a means of fitting generalized quasi-likelihood models to correlated data. The performance of 

the proposed modified generalized quasi-likelihood model is demonstrated through a simulation 

study and we highlight the importance of accounting for overdispersion in the evaluation of 

adolescent obesity data collected from a U.S. longitudinal study.

Keywords

Canonical parameter; correlation; generalized linear models; generalized method of moments; 
overdispersion

1. Introduction

As a common statistical measure, the variance is often relied on to evaluate the model fit and 

to understand the differences between the responses through the construction of test statistics 

and confidence intervals. The form of the variance is often assumed based on the underlying 

distribution of the responses. In fact, the variance is related to the mean for most 
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distributions in the exponential family. However, while the responses may be on a certain 

scale or resemble a certain distribution, extraneous variation can impact the mean-variance 

relationship. Extraneous variation, or so-called overdispersion, is often present in 

longitudinal or clustered data arising from a hierarchical data structure.

Ignoring overdispersion in the fit of correlated data results in summary statistics, including 

test statistics, with a larger variance than expected.1 It often leads to a loss of efficiency in 

using statistics appropriate for the single-parameter family.2 Studies have shown that 

ignoring overdispersion and thereby misspecifying the model biases the covariate effects and 

greatly impacts the standard error of the coefficients.3, 4 While underdispersion, the case 

when the variation is smaller than expected, may occur and also impacts the accuracy of the 

analysis when it is not appropriately specified, McCullagh and Nelder5 have suggested that 

overdispersion may be the norm. Various methods have been proposed to identify the 

underlying variation and provide corrections to improve estimates of the variance.6, 7

Overdispersion or underdispersion is often identified by estimating the parameters in the 

mean-variance relationship and measuring the deviations from the theoretical values under 

the assumed distribution. Kukush et al.8 considered a pair of mean and variance functions 

with a common parameter vector θ estimated using an extended quasi-score function. Tsou9 

considered two parameters ψ, λ  in a parametric robust method of determining the mean-

variance relationship through estimation of the power λ with an adjusted robust log 

likelihood method for fixed values of ψ. In addition, researchers have developed methods to 

test for overdispersion in proportions10 and score test statistics for overdispersed Poisson 

and binomial models.11 Xiang et al.12 provided a score test for overdispersion in a zero-

inflated Poisson mixed regression model. Yang, Hardin, and Addy13 modified the score 

statistic to test overdispersion in the zero–inflated generalized Poisson mixed model. While 

these tests work well for identifying overdispersion, current parameterizations are limited to 

one parameter or are only applicable to distributions that have a particular form for the 

variance.

Overdispersed data are analyzed with appropriate statistical models such as generalized 

estimating equations, generalized linear mixed models, and joint modeling of the mean and 

dispersion.14 Generalized estimating equations account for correlation through the selection 

of a covariance structure for the correlated responses.15 Generalized linear mixed models 

have been used to model overdispersion in non-normal data.16 These models incorporate 

random effects, through random intercepts and random slopes, to account for correlation due 

to clustering.17 The joint modeling of the mean and the variance uses an additional 

dispersion submodel to address the overdispersion in a generalized linear model context.18 

Joint modeling allows one to simultaneously model both the mean and the variance through 

submodels. This technique has been extended to consider joint modeling in hierarchical 

generalized linear model structures.19, 20

Quasi-likelihood models are useful in cases where the underlying distribution is unspecified.
21 This modeling technique relaxes the distributional assumption in the random component 

and instead relies on the specification of a mean-variance function. The regression parameter 

estimates and standard errors are obtained from the specified mean-variance relationship and 
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estimates of the covariance matrix in a quadratic form. The quasi-likelihood approach 

possesses many good properties, including unbiased estimates and small standard errors as 

compared to alternative methods.22 While the quasi-likelihood method is appropriate for 

evaluating overdispersed data, the form of the variance has been limited to a single 

multiplicative overdispersion parameter.

This paper proposes a modified generalized quasi-likelihood (MGQL) model which utilizes 

a canonical two-parameter mean-variance relation. The proposed canonical parameterization 

is flexible and can be used to represent the form of the variance for any distribution in the 

exponential family. The incorporation of this mean-variance relationship in the MGQL 

extends quasi-likelihood models to describe a larger class of variance functions in the 

analysis of correlated data.

In Section 2, we review mean-variance relationships in the exponential family and the 

generalized quasi-likelihood approach to estimate the regression parameters and variance 

components in the analysis of clustered data.23 In Section 3, we present the canonical 

parameterization of the mean-variance relationship. We provide a generalized method of 

moments (GMM) approach to estimate the mean-variance parameters and introduce a test to 

identify overdispersion or underdispersion. We propose a model that incorporates the mean-

variance relationship in the form of a modified generalized quasi-likelihood. In Section 4, a 

simulation study is utilized to demonstrate the performance of the MGQL model. In Section 

5, the MGQL model is used to analyze data collected through the National Longitudinal 

Study of Adolescent to Adult Health (Add Health).24 This study collected health 

information on adolescents over four waves of interviews, and is highly correlated due to the 

nested structure of the longitudinal study. We demonstrate the use of the MGQL to 

appropriately account for overdispersion in the evaluation of risk factors associated with 

obesity.

2. Background

2.1 Mean-Variance Relation Parameters

Let the vector of observations y = y1, …, yn
T  be realizations of a set of independent random 

variables Y with means μ related to a set of k covariates X = x1
T , …, xk

T  through a function 

g ⋅  such that E Y = μ = μ1, …, μn
T  and g μ = η = Xβ. The estimates of the regression 

parameters β = β0, …, βk
T  can be obtained using estimating equations from the likelihood. 

Let the joint probability function of Yi with known functions a, b, and c and known 

dispersion parameter ϕ5 be

f y; θ, ϕ = exp yθ − b θ
a ϕ + c y, ϕ .

If θ is unknown, we have a two-dimensional exponential family with log likelihood

l θ, ϕ y = yθ − b θ
a ϕ + c y, ϕ .
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Using the expectation of the derivative of the likelihood

E ∂l θ, ϕ y
∂θ = 0

and the property

E ∂2l θ, ϕ y
∂θ2 + E l θ, ϕ y

∂θ
2

= 0

yields the expected value E Y = b′ θ  and the variance var Y = b″ θ a ϕ  where b′ ⋅
denotes the first derivative and b″ ⋅  denotes the second derivative. Thus, both b′ and b″ are 

functions of the canonical parameter θ. The mean and the variance are related through the 

first derivative and second derivative of the function b(θ). The variance of the observations is 

a product of a function of the canonical parameter θ and a function of the dispersion 

parameter ϕ.

The Poisson distribution and the binomial distribution are members of the exponential 

family and are commonly used to analyze count data and binary data, respectively. The 

Poisson distribution has probability mass function

f y; α = exp y log α − α − logy!

with a ϕ = 1, b θ = α = exp θ , c y, ϕ = − logy!, and canonical parameter θ = log α . Thus, 

the expected mean and variance under the Poisson distribution are equal to α. The binomial 

distribution has probability distribution function

f y; m, p = m
y py 1 − p m − y,

with a ϕ = 1, b θ = mlog 1 + exp θ , c y, ϕ = log m
y  and the canonical parameter 

θ = log p
1 − p . Under the binomial distribution, the expected mean is mp and the expected 

variance is mp 1 − p .5, 25

2.2 Generalized Quasi-likelihood Models

Generalized quasi-likelihood models use the specification of the mean-variance relationship 

to evaluate correlated data. Consider vectors of correlated observations y1, …yn for i = 1, …n
where yi = yi1, … . yini . The correlated observations yij for j = 1, …, ni where ni is the sample 

size of the ith vector comes from a distribution in the exponential family with link function 

g ⋅  such that

g μij = ηij = xijTβ + σξi
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for ξi N 0, 1  as ξi = αi/σ for k covariates and random effects αi N 0, σ2  for cluster i. We 

estimate the parameters β and σ using GQL. Let the response vector be

Si = yiT, uiT

for cluster i, where yiT = yi1, …, yini  and uiT = ui1
T , ui2

T  contains the pairwise products for 

ui1 = yi1
2 , …, yini

2  and ui2 = yi1yi2, …, yijyij*, …, yi ni − 1 yini . Let θ = βT , σ T
 and Mi θ  be 

the mean of the response vector Si. Let Ωi θ  be the covariance matrix for Si with elements 

ωij. Then, the set of generalized quasi-likelihood estimating equations,

∑i = 1
n ∂Mi′ θ

∂θ Ωi
−1 θ Si − Mi θ = 0 (2.1)

provides GQL estimates of β and σ.21, 23 The mean of the response vector, Mi θ , is 

evaluated as

Mi θ = E Si = E Yi1, …, Y ini, Y i1
2 , …, Y ini

2 , Y i1Y i2, …, Y i ni − 1 Yni

and

E Yij = μij θ = E g 1 xijT β + σξ

E Yij2 = mijj θ = E g 2 xijT β + σξ

E YijY ik = mijk θ = E g 1 xijT β + σξ g 1 xik
T β + σξ

where the functions g r ηij  are the rth finite moments of yij. The partial derivative matrix 

∂Mi′ θ
∂θ  has dimension p + 1 × ni ni + 1 /2 , with partial derivatives

∂μij θ
∂β = E g 1 xijT β + σξ xijT

∂mijj θ
∂β = E g 2 xijT β + σξ xijT
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∂mijk θ
∂β = E g 1 xijT β + σξ g 1 xik

T β + σξ xijT + E g 1 xijT β + σξ g 1 xik
T β

+σξ xik
T

∂μij θ
∂σ = E ξg 1 xijT β + σξ xijT

∂mijj θ
∂σ = E ξg 2 xijT β + σξ xijT

∂mijk θ
∂σ = E ξ g 1 xijT β + σξ g 1 xik

T β + σξ + g 1 xijT β + σξ g 1 xik
T β + σξ

where g r ⋅  as the first derivative of g r ⋅ . Then the covariance matrix is

Ωi =
Σi Pi
Pi′ Qi

where Σi = cov Y i , Pi = cov Y i, Ui
T  and Qi = cov Ui . The diagonal elements of Σi are the 

variances of Yi such that σijj = V ar Y ij = mijj θ − μij2 θ  with off diagonal elements 

σijk = Cov Y ij, Y ik = mijk θ − μij θ μik θ . The matrix Pi is of dimension ni × ni ni + 2 /2

and contains cov Y ij, Y ij
2 , cov Y ij, Y ijY il  and cov Y ij, Y ikY il . For j = k = l,

cov Yij, Y ij2 = pijjj θ = E g 3 xijT β + σξ − μij θ mijj θ .

For j = k ≠ l and j = l ≠ k, the covariance elements are

cov Yij, Y ijY il = E Yij2 Y il − μij θ mijl θ

= E g 2 xijT β + σξ g 1 xil
Tβ + σξ − μij θ mijl θ .

For j ≠ k ≠ l,

cov Yij, Y ikY il = pijkl θ

= E g 1 xijT β + σξ g 1 xik
T β + σξ g 1 xil

Tβ + σξ − μij θ mikl θ .
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In the covariance matrix, Qi contains cov Y ijY ik, Y ilY iw  with dimension 

ni ni + 1 /2 × ni ni + 1 /2 . For j = k = l = m,

cov Yij2 , Y ij2 = qijjjj θ = E g 4 xijT β + σξ − mijj2 θ .

For j = k ≠ l ≠ w,

cov Yij2 , Y ilY iw = qijjlw θ

= E g 2 xijT β + σξ g 1 xil
Tβ + σξ g 1 xiwT β + σξ − mijj θ milw θ .

For j ≠ k ≠ l ≠ w,

cov YijY ik, Y ilY iw = qijklw

= E g 1 xijT β + σξ g 1 xik
T β + σξ g 1 xil

Tβ + σξ g 1 xiwT β + σξ − mijk θ milw θ .

The quasi-likelihood estimate θQL = βQL
T , σQL

T
 is obtained using Newton-Raphson 

iteration as 

θQL t + 1 = θQL t + ∑i = 1
n ∂Mi′ θ

∂θ Ωi
−1 θ

∂Mi θ
∂θ t

−1
∑i = 1

n ∂Mi′ θ
∂θ Ωi

−1 θ Si − Mi θ  with 

covariance V where V θQL = ∑i = 1
n ∂Mi′ θ

∂θ Ωi
−1 θ

∂Mi θ
∂θ

−1
. These GQL estimators are 

consistent and efficient.23 A specification of the GQL model is important as consistency of 

the regression parameter estimates depends on correctly specifying the link function and the 

efficiency depends on a correctly specified variance function.

3. Modified Generalized Quasi-likelihood Models using the Canonical 

Mean-Variance Parameterization

3.1 Canonical Parameterization

For a random variable Y, we consider describing the variance in terms of two parameters 

including a dispersion parameter ψ and power parameter λ. Tsou9 suggested the mean-

variance relationship, ψμλ, which introduced additional flexibility compared to the one 

parameter form. However, this form is limited to distributions with a variance power 

relationship such as the Poisson or gamma distributions (λ = 1 or λ = 2, respectively). We 

generalize this power parameterization through the canonical parameter. Consider the 

canonical parameter θ through its derivative of the inverse link function h, where ℎ = g−1. 

Then, we propose the general mean-variance relationship as
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var Y = ψ ℎ′ g μ λ = ψ ℎ′ θ λ

where ℎ′ θ  is the first derivative of the inverse of the canonical link and ψ and λ are 

parameters measuring the overdispersion, ψ > 0. This form of the mean-variance 

relationship is distinct as it is applicable to members of the exponential family of 

distributions and provides general flexibility in describing the mean-variance relationship.

For example, if Y follows a Poisson distribution with natural parameter α, then the canonical 

parameter is θ = log α  and the corresponding mean-variance parameter relation is

var Y = ψ ℎ′ θ λ = ψαλ .

If Y follows a binomial distribution with natural parameters m and p and canonical 

parameter θ = logit p , then the canonical mean-variance parameter relation is

var Y = ψ ℎ′ θ λ = ψ exp θ
1 + exp θ 2

λ
= ψ p 1 − p λ,

as p = eθ 1 + eθ −1. Thus, the dispersion parameter ψ and power parameter λ are a means of 

adjusting for deviation from the assumed distributional properties. Values of the 

overdispersion parameters ψ and λ different than 1 indicate violations in the variance 

assumption. While the binomial does not have a natural power relationship between the 

mean and variance, the relationship is tractable in its power form when based on the 

canonical parameter. We measure the deviations and consider distributions that are not fully 

identified but belong to the quasi-exponential family. Such distributions are identified based 

on the scale of the responses which is robust to misspecification.

3.2 Estimation of ψ and λ

Let γGMM be an estimator for a vector of parameters γ = ψ, λ T  that minimizes the 

quadratic objective function fn γ TW nfn γ  where fn γ  is a function of the vector of the 

sample moment conditions, and Wn is a symmetric, positive definite weight matrix of 

dimension n.26, 27 Then,

γGMM = argminβ fn γ TW nfn γ (3.1)

is a generalized method of moments estimator for γ which minimizes the objective function. 

Thus, the GMM estimators of the parameters ψ and λ, are obtained from the population 

moment conditions

E ℎ′ θi var yi − ψ ℎ′ θi
λ = 0 (3.2a)
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E ℎ′ θi
2 var yi − ψ ℎ′ θi

λ = 0 (3.2b)

where ℎ′ θi  is the first derivative of the inverse link function and var yi  is an empirical 

estimate of the variance based on the squared residual, yi − μi
2. Equating the moment 

conditions and an empirical estimate of fn γ  results in

1
n ∑

i = 1

n
f yi, ψ, λ =

1
n ∑

i = 1

n
ℎ′ θi var yi − ψ ℎ′ θi

λ

1
n ∑

i = 1

n
ℎ′ θi

2 var yi − ψ ℎ′ θi
λ

= 0
0

We make use of a two-step GMM approach, with an identity weight matrix in the first step. 

In the second step, the weights are selected as an estimate of the optimal weight matrix for 

GMM as

W n = 1
n ∑i = 1

n f yi, ψ, λ f yi, ψ, λ T −1

where ψ and λ are mean-variance relationship parameter estimates from the first step.28 

Thus, the vector of GMM estimates for the mean-variance relation parameters γGMM

minimizes the quadratic objective function fn γ TW nfn γ . The generalized method of 

moments approach is flexible and estimates both parameters ψ, λ  simultaneously.

An alternative approach is to fix one parameter at a time and estimate the second parameter 

using one moment condition. Thus, an extension of GMM is to make use of additional 

moment conditions, such as

f3 yi, ψ, λ = ℎ′ θi
3 var yi − ψ ℎ′ θi

λ
(3.3)

to estimate the parameters. The additional moment condition improves the asymptotic 

efficiency, although there is a possibility of small sample bias.29

To identify the mean-variance relation in clustered data, consider yij, the jth observation in 

the ith cluster, j = 1, …, ni and i = 1, …, n, with mean μij which is related to k covariates and 

random effect αi through the link function g such that

E Yij = μij

and

g μij = ηij = xijk
T β + αi
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where the random effect αi represents the variation between clusters such that αi N 0, σ2 . 

Further, let ξi = αi/σ, such that ξi N 0, 1  so the linear predictor reduces to

g μij = xijk
T β + σξi .

The general mean-variance relationship, obtained for the data across all the clusters, is

var Y = ψ ℎ′ θ λ,

where θ is the canonical parameter, ℎ′ θ  is the first derivative of the inverse canonical link, 

and ψ and λ are the variance parameters estimated from the data, (3.2a) and (3.2b). The 

estimates of ψ and λ indicate the strength of the clustering (variance of the random effect).

The parameters ψ and λ are essential in defining the variance and identifying deviations 

from the theoretical values in a known distributional mean-variance relation. We obtain 

GMM estimators using the first and second moments based on the fact that the distribution is 

a member of the quasi-exponential family.30 We do not require complete distributional 

assumptions, as is required with maximum likelihood estimators, and the estimates are 

obtainable even when likelihood methods are computationally burdensome.26 The GMM 

estimators for ψ and λ are consistent and asymptotically normal.31

3.3 Inference for ψ and λ

Assume that the data come from a quasi-exponential family. The sample moments are 

asymptotically normally distributed, so we have

n fn γ d N 0, Δ ,

with the asymptotic variance Δ = E f y, γ∗ f y, γ∗ T  where γ∗ is the estimate of the 

parameters of interest.30 For the mean-variance relationship parameters ψ and λ, the GMM 

estimator γGMM = ψGMM, λGMM  has the asymptotic covariance

var γGMM = V GMM = 1
n ΓTW Γ −1ΓTW ΔW Γ ΓTW Γ −1

where W is a specified weight matrix and Γ  is the expected value of the Jacobian of 

population moment conditions found as

Γ = E ∂f y, γ
∂γ = E ∂f y, λ, ψ

∂ψ , ∂f y, λ, ψ
∂λ

T
.

In the optimal case, the weight matrix is selected as W = Δ −1, so that
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V GMM = 1
n Γ′W Γ −1

resulting in asymptotically efficient GMM estimators, ψGMM and λGMM.26 In practice, the 

covariance matrix is evaluated using γ,

Γ = 1
n ∑i = 1

n ∂f y, γ
∂γ .

Significant overdispersion is identified through two hypothesis tests of the overdispersion 

parameters ψ and λ,

H0:ψ = 1, Ha:ψ > 1

and

H0:λ = 1, Ha:λ > 1.

Then the z-test statistics

Zψ = ψ − 1
var ψ

and

Zλ = λ − 1
var λ

,

follow the standard normal distribution under the null hypothesis. Thus, a measure of the 

overdispersion is given based on the joint 100(1-α)% confidence intervals for ψ and λ,

ψGMM − z1 − α
2

V GMM, ψ, ψGMM + z1 − α
2

V GMM, ψ

λGMM − z1 − α
2

V GMM, λ, λGMM + z1 − α
2

V GMM, λ

where zα is the αth quantile from the standard normal distribution.28

3.4 Modified Generalized Quasi-likelihood Models

In this section, we propose a modified generalized quasi-likelihood model for correlated data 

based on the canonical parameterization. As correlated data necessitate dealing with 

extravariation, we rely on our two-parameter mean-variance relation. The GQL approach 
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relies on the specification of the mean-variance relationship rather than a distributional 

assumption. We address the correlation through the empirical mean-variance estimates of ψ
and λ.

The generalized quasi-likelihood estimating equation (2.1), with Mi, 
∂Mi′ θ

∂θ , and the 

covariance matrix Ωi θ , is used to estimate the regression parameters β and the variance of 

the random effect σ. Though GQL performs well and produces consistent and efficient 

estimators,23 it relies on the estimate of the covariance Ωi θ . We update this estimate to 

incorporate extravariation based on the canonical parameterization ψΩi θ λ such that the 

modified quasi-likelihood estimate θMGQL is obtained iteratively as

θMGQL t + 1 = θMGQL t + ∑i = 1
n ∂Mi′ θ

∂θ ψΩiλ θ −1∂Mi θ
∂θ t

−1

∑i = 1
n ∂Mi

′ θ

∂θ ψΩiλ θ −1 Si − Mi θ .

with covariance

V θMGQL = ∑i = 1
n ∂Mi′ θ

∂θ ψΩiλ θ −1∂Mi θ
∂θ

−1
.

This modification makes use of the GMM estimates of ψ and λ. For given ψ and λ, the 

MGQL estimates of β and σ in (2.1) are unbiased. The MGQL estimators are consistent and 

efficient as μij is the mean of yij.

4. Simulation Study

We simulate hierarchical binary data and evaluate the estimation of the regression 

parameters using the MGQL model which incorporates GMM estimates of the mean-

variance parameters into the quasi-likelihood model framework, a GQL model, and a 

generalized linear mixed model (GLMM) over 1000 iterations. The two-level binary data 

contain 50 clusters with 10 observations in each cluster, with the linear predictor 

logit μi = ηi = β1Xi1 + β2Xi2 + αi where β1 = β2 = 1 and X1 and X2 are generated from 

standard normal distributions. The canonical mean-variance parameter relation under the 

Bernoulli distribution is var Y = ψ p 1 − p λ. To evaluate the performance of these 

regression methods under the true mean-variance relation and an overdispersed form, we 

consider cases where the random effects are generated under the normal distribution and the 

t-distribution with 4 degrees of freedom. The GLMM is fit using the default optimization 

techniques in the R statistical software, which utilizes Nelder-Mead for the preliminary 

optimization of the random effects parameters and the bobyqa optimizer from the minqa 

package for the final estimation of the random and fixed effects parameters.
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4.1 Normally Distributed Random Effects

We evaluate hierarchical binary data with normally distributed random effects. The random 

intercept αi associated with each cluster is generated from N 0, σ2  with σ = 0.6, 0.8, 1, 1.2, 

1.4. The results are reported in Table 1. The generalized linear mixed model estimates for 

the standard error of σ were obtained using a profile likelihood approach.

The simulation results demonstrate that the MGQL approach performs well and suggests 

that the MGQL model recovers the true values when relying on the estimated mean-variance 

relationship in the covariance matrix. While the parameter estimates are similar across the 

three methods, the standard errors for the MGQL estimates of β1 and β2 are lower than the 

standard errors of the GQL approach across all values of σ. The MGQL approach requires 

slightly more iterations, on average, than the GQL approach to achieve convergence, 

although the two approaches require similar computation time. As expected, the GLMM 

performs the best among the three methods as the data are generated under this model.

4.2 t-Distributed Random Effects

We evaluate the performance of the MGQL, GQL, and GLMM for non-normally distributed 

random effects. The random effects αi are generated under the t-distribution with 4 degrees 

of freedom, which has heavier tails than the normal distribution. The model parameter 

estimates and standard errors are reported in Table 2.

As seen in the previous simulation, MGQL tends to be more efficient than the GQL 

approach for estimates of β. The simulation results also highlight the advantage of 

implementing the MGQL model for overdispersed data. For small values of σ, the simulated 

data reflect the true mean-variance parameterization for the Bernoulli distribution and thus 

we see similar performance across the three methods. However, for larger values of σ where 

overdispersion is present (for σ = 1.2 and σ = 1.4, there was significant overdispersion in 

60.0% and 62.3% of simulations, respectively), we find that the MGQL model produces 

improved estimates of β1 and β2 compared to the GQL model and GLMM. In addition, for 

values of σ > 1, we see that MGQL produces more efficient variance estimates. Thus, when 

the random effects are not normally distributed, the MGQL approach has many advantages 

for modeling overdispersed data compared to the GQL model and GLMM.

5. Numerical Example

The Add Health Study is a longitudinal study in the United States of adolescents in 7th 

through 12th grade, with information collected over four waves of interviews between 1994 

and 2008.24 The data are available on the Add Health website (http://www.cpc.unc.edu/

addhealth). We fit a modified generalized quasi-likelihood model to evaluate the binary 

variable adolescent obesity for 2,712 adolescents in the United States. The factors associated 

with obesity include activity scale and feeling scale, ratings of physical activity and 

emotional health. The mean-variance parameter estimates are ψ = 3.16 and λ = 1.80 with 

standard errors 0.27 and 0.06, respectively. The estimates indicate a significant deviation 

from the distributional form of the mean-variance relationship (test statistics Zψ = 7.94 and 

Zλ = 13.57). Thus, making use of the true mean-variance form accounts for the clustering. 

Irimata and Wilson Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cpc.unc.edu/addhealth
http://www.cpc.unc.edu/addhealth


The model parameter estimates and standard errors of the MGQL, GQL, and GLMM are 

provided (Table 3).

The covariates activity scale and feeling scale as well as the random effect are found to be 

significant across all three models. The regression parameter estimates for activity scale are 

positive, indicating that increased physical activity is associated with a lower probability of 

obesity. Similar estimates are produced for the GQL and GLMM approaches, while the 

MGQL estimate is slightly smaller βActivity Scale = − 1.0921 . Similarly, the parameter 

estimates for feeling scale vary slightly although all three estimates are negative, indicating 

that larger values of the computed emotional health measure is associated with a lower 

probability of obesity. The estimates of the standard error of the random effect σ vary 

slightly among the three models, with σMGQL = 2.6078, σGQL = 2.7022, and 

σGLMM = 2.6900. The random effect variance for the MGQL model is found to be the 

lowest of the three estimates.

6. Conclusions

It is common to assume that the variance of a random variable is a function of the mean, 

although it is often the case that the true variance in the data may be inflated due to 

underlying correlation or the hierarchical data structure. While the presence of 

overdispersion impacts the accuracy of statistical evaluations, the MGQL is a modeling 

approach that appropriately fits correlated data. The MGQL approach is flexible as it 

accounts for correlation through an extended representation of the covariance. The canonical 

parameterization is tractable in the power form for any distribution in the exponential family. 

Moreover, deviations in the variance can be readily identified using the proposed GMM 

estimators of the mean-variance parameters ψ and λ which are consistent and asymptotically 

normal. A simulation study demonstrated that the MGQL addresses correlation through the 

use of the mean-variance relationship and performs as well or better than existing methods 

including GQL models and GLMM, particularly for non-normally distributed random 

effects. The study confirmed that the MGQL retains good properties of quasi-likelihood 

approaches including unbiased estimates and small standard errors. In addition, we consider 

a numerical example to evaluate obesity data from the Add Health study. We verified that the 

MGQL model produced comparable results to existing models. Factors including activity 

scale and feeling scale were found to be negatively associated with obesity, and the MGQL 

model produced a lower variance estimate of the random effect.
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Table 1:

Model Fit Simulation Results for Normally Distributed Random Effects

β1 β2 σ Iterations

Est SE Est SE Est SE

σ = 0.6

MGQL 1.0083 0.1228 1.0181 0.1231 0.5687 0.2177 5.5

GQL 1.0053 0.1319 1.0120 0.1320 0.5837 0.2019 5.2

GLMM 1.0040 0.1316 1.0110 0.1318 0.5706 0.1872 -

σ = 0.8

MGQL 1.0093 0.1243 1.0241 0.1247 0.7822 0.1880 4.5

GQL 1.0045 0.1344 1.0159 0.1348 0.7948 0.1814 4.0

GLMM 1.0035 0.1327 1.0149 0.1331 0.7790 0.1869 -

σ = 1

MGQL 1.0115 0.1281 1.0237 0.1284 0.9841 0.1924 4.5

GQL 1.0047 0.1372 1.0137 0.1375 1.0014 0.1916 4.0

GLMM 1.0041 0.1286 1.0131 0.1288 0.9832 0.1943 -

σ = 1.2

MGQL 1.0103 0.1333 1.0225 0.1336 1.1837 0.2067 4.6

GQL 1.0025 0.1401 1.0126 0.1404 1.2044 0.2096 4.1

GLMM 1.0023 0.1220 1.0125 0.1222 1.1835 0.2108 -

σ = 1.4

MGQL 1.0148 0.1402 1.0253 0.1405 1.3951 0.2280 4.7

GQL 1.0078 0.1437 1.0146 0.1439 1.4120 0.2326 4.2

GLMM 1.0080 0.1137 1.0147 0.1139 1.3874 0.2335 -
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Table 2:

Model Fit Simulation Results for t-Distributed Random Effects

β1 β2 σ Iterations

Est SE Est SE Est SE

σ = 0.6

MGQL 1.0185 0.1245 1.0141 0.1243 0.7653 0.1922 5.0

GQL 1.0148 0.1347 1.0099 0.1345 0.7831 0.1818 4.0

GLMM 1.0136 0.1324 1.0089 0.1320 0.7671 0.1883 -

σ = 0.8

MGQL 1.0150 0.1287 1.0071 0.1283 1.0047 0.1953 4.7

GQL 1.0143 0.1379 1.0041 0.1374 1.0214 0.1935 4.1

GLMM 1.0143 0.1281 1.0041 0.1275 1.0075 0.1977 -

σ = 1

MGQL 1.0134 0.1354 1.0119 0.1352 1.2435 0.2136 4.9

GQL 1.0118 0.1414 1.0111 0.1413 1.2542 0.2151 4.2

GLMM 1.0127 0.1190 1.0120 0.1191 1.2417 0.2194 -

σ = 1.2

MGQL 1.0104 0.1427 1.0090 0.1425 1.4770 0.2385 4.7

GQL 1.0102 0.1450 1.0093 0.1449 1.4821 0.2414 4.3

GLMM 1.0119 0.1207 1.0110 0.1205 1.4698 0.2466 -

σ = 1.4

MGQL 1.0128 0.1507 1.0050 0.1503 1.7140 0.2705 4.8

GQL 1.0135 0.1490 1.0076 0.1487 1.7109 0.2716 4.4

GLMM 1.0155 0.1328 1.0096 0.1327 1.6969 0.2770 -
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Table 3:

Parameter estimates and standard errors for adolescent obesity data

βActivity Scale βFeeling Scale σ

MGQL
Estimate −1.0921 −0.6758 2.6078

Std. Error 0.0326 0.0650 0.0794

GQL
Estimate −1.3458 −0.5041 2.7022

Std. Error 0.0449 0.0718 0.0974

GLMM
Estimate −1.3438 −0.6527 2.6900

Std. Error 0.0471 0.0726 0.0959
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